Solar Lamp using the PR4403

The PR4403 is an enhanced cousin of the PR4402 40 mA LED driver. It has an extra input called LS which can be taken low to  turn the LED on. This makes it very easy  to build an automatic LED lamp using a  rechargeable battery and a solar module. The LS input is connected directly to the solar cell, which allows the module to be  used as a light sensor at the same time as  it charges the battery via a diode. When  darkness falls so does the voltage across  the solar module: when it is below a thresh-old value the PR4403 switches on. During  the day the battery is charged and, with  the LED off, the driver only draws 100 µA.
.
Solar Lamp using the PR4403  Circuit Diagram :
Solar Lamp-Circuit Diagram
Solar Lamp using the PR4403 Circuit Diagram

At night the energy stored in the battery is released into the LED. In contrast to similar designs, here we can make do with a single  1.2 V cell. The PR4403 is available in an SO-8 pack-age with a lead pitch of 1.27 mm. The  other components are a 1N4148 diode (or a Schottky 1N5819) and a 4.7 µH choke. Pin 2 is the LS enable input, connected directly to the solar module. According to the datasheet, it is possible to connect a series resistor at this point (typ. 1.2 M) to increase the effective threshold voltage. The LED will then turn on slightly earlier in the evening before it is not completely  dark. Pins 3 and 6 of the device must be connected together and together form the output of the circuit.

Incredibly Illuminated Persistence of Vision LED Clock

Persistence of Vision flashes LEDs during sure moments as it spins, to illustrate formulating a clock above. The PCB blades have been spun around regulating a pc cooling air blower to create this POV clock.

Hacks and Mods: Incredibly Illuminated Persistence of Vision LED Clock
The existence outcome is interjection to bright LEDs that have been synchronized with a Hall Effect sensor. The house gets energy wirelessly in between a bottom transformer as well as a curl upon a board.

Hacks and Mods: Incredibly Illuminated Persistence of Vision LED Clock
The arrangement is ever becoming different as it receives a lot of inputs from a firmware automatic with 3000 lines of formula. Unlike alternative clocks, we can essentially tweak a lot of animations as well as customize a display.

VFD Talking Alarm Clock

Are you having a hard time waking your hubby from sleeping? And when you leave the house for work, are you in doubt that he has not gotten out of bed? One thing that will stop your worries is to use this clock that does not just tell time but also “swears”.


This is an All-in-one alarm clock. It shows an alphanumeric character, it has a calendar, temperature, and a light sensor to control its brightness. You can plug it on to your power source or use a battery. Although this is cool, It’s not ok being around kids. We don’t want young kids to learn to swear or say bad things, right? 

How Build a Solar Charger use IC LM317

 At this point is a Solar Charger Circuit to is used to charge information Acid otherwise Ni-album batteries using the solar energy power. The circuit harvests solar energy to charge a 6 volt 4.5 Ah rechargeable battery in favor of various applications. The stallion has Voltage and Current supervision and terminated voltage restrict sour facilities.

Circuit uses a 12 volt solar panel and a changeable voltage supervisor IC LM 317. The solar panel consists of solar cells each one rated on 1.2 volts. 12 volt DC is presented from the panel to charge the battery. Charging current passes through D1 to the voltage watchdog IC LM 317. By adjusting its Adjust pin, output voltage and current can subsist regulated.

How Build a Solar Charger use IC LM317
VR is placed amid the adjust pin and ground to provide an output voltage of 9 volts to the battery. Resistor R3 confine the charging current and diode D2 prevents discharge of current from the battery. Transistor T1 and Zener diode ZD conduct yourself having the status of a stop rotten switch at what time the battery is ample. Normally T1 is rancid and battery gets charging current.
After the terminal voltage of the battery rises over 6.8 volts, Zener conducts and provides station current to T1. It followed by turns on education the output of LM 317 to prevent charging. If you want to specific voltage / current output , you can replacing ZD on the circuit above.

Now Low-Cost Arduino Thermal Camera

Do you still remember the H1N1 outbreak in Asia? The manifestations are usually flu-like symptoms which includes fever, cough and colds. The best way to detect fever when people are arriving from the affected areas was to use a thermal camera. These were widely used in Asian countries especially on airports but not all can afford one because it’s very expensive.

Hacks and Mods: Low-Cost Arduino Thermal Camera

We can all agree that this is the greatest deal ever! A thermo-cam which costs around 100$, now there is no reason it can’t be bought by even poor countries to help prevent the spread of the disease. Credit must be given to inventions like this because it’s really a big help.

Build a Smart battery charger

This is a smart battery charger can protect your vehicle's battery from failing and will prolong its life – they're fully automatic so you can connect and forget.

http://diagramdigital.blogspot.com/2012/12/build-smart-battery-charger.html

Simple Multivibrator Flasher

Simple Multivibrator Led Flasher
The basic 2 LED astable multivibrator flasher built by Mary. She chose to use 2 different colored LEDs and the red LED is clear when unlit. It is quite bright when lit compared to the yellow LED despite the fact that it only draws 0.5 mA more. The bread boarded test circuit was powered by a new 9 volt battery and was regulated by a L78L05 (in a TO-92 package as shown in the schematic). The 5 volt regulator was used to avoid exceeding the reverse breakdown voltage of the 2N3904. This topic will be discussed a little later on.

470 ohm current dropping resistors were chosen to keep the collector current draw less than 10 mA. The LEDS were bright enough to see well in dim lighting. You may change this resistor "R" value (lower R = brighter), but do not exceed the maximum current rating for the LED or transistor (this is more applicable to higher voltage multivibrators). You may also place 2 or more LEDs in series on each half of a multivibrator, however, the current dropping resistor may need to be reduced to maintain brightness. Consider using a power supply as opposed to battery power for your flashers.

To change the pulse (oscillation) frequency, you can change the base resistor or the timing capacitor values. For example, increasing the capacitor or the base resistor values will increase the time OFF per cycle and thus reduce the oscillation frequency. The oscillation frequency is 60 divided by the sum of the time OFF for each half of the multivibrator.  Do not feel you have to use the same timing capacitor for each 1/2 of the multivibrator. Multivibrators with different timing components on each 1/2 are termed asymmetrical.

Over time, some builders sent me emails that they could not get their multivibrator to run. I problem-solved with them and discovered many problems including bad parts, bread boarding errors, the oscillation frequency was too fast to observe, transistors were not saturated during their ON time and failure of the transistors due to excessive current or perhaps even reverse emitter-base breakdown.

Simple Car Battery Voltage Monitor Circuit

This circuit is used to monitor the battery voltage to display a dual-colored LED status of the battery to. If the LED “green”battery voltage exceeds 11.9 volts. If the yellow LED, battery voltage 11.9 to 11.5 volts. If the LED is “red” If the battery voltage below 11.5 volts. You can of course change the trigger points by the trimmer resistors and / or changing the value of the resistors in the divider.
 .
 Simple Car Battery Voltage Monitor Circuit Diagram

.
Simple Car Battery Voltage Monitor Circuit diagram

A dual op amp is used as a comparator. The green LED on the board, until the voltage exceeds 11.5 volts. The red LED illuminates when the voltage falls below 11.9 volts to the circuit. Therefore, in the 11.9 to 11.5 volts, both LEDs are on, producing a slightly yellow color. When the voltage falls below 11.5 V, the green LED, and now only the red LED flashes to indicate low voltage.

Parts List
R1=1K2
R2-3-4=680R
R5=15K
R6=10K
R7-8-9-10=1K
IC1=LM324
D1=5V6 /0.5W Zener
D2-3-4-5=LED
RV1=10K trimmer

 Is recommended that multi-shaper for V1 and V2. Muti-trimmer makes it much easier to trigger points to make as a less expensive single-turn trimmer. The trimmer can be completely eliminated if you have access to a range of 1% resistors and has had calculated carefully. You would also want to provide more accurate reference voltage as the common 78L05 regulator.




Simple Sixteen Stage Bi-Directional LED Sequencer

The bi-directional sequencer uses a 4 bit binary up/down counter (CD4516) and two "1 of 8 line decoders"74HC138 or 74HCT138) to generate the popular "Night Rider" display. A Schmitt Trigger oscillator provides the clock signal for the counter and the rate can be adjusted with the 500K pot. Two additional Schmitt Trigger inverters are used as a SET/RESET latch to control the counting direction (up or down).

Be sure to use the 74HC14 and not the 74HCT14, the 74HCT14 may not work due to the low TTL input trigger level. When the highest count is reached (1111) the low output at pin 7 sets the latch so that the UP/DOWN input to the counter goes low and causes the counter to begin decrementing. When the lowest count is reached (0000) the latch is reset (high) so that the counter will begin incrementing on the next rising clock edge.

16 Stage Bi-Directional LED Sequencer

The three lowest counter bits (Q0, Q1, Q2) are connected to both decoders in parallel and the highest bit Q3 is used to select the appropriate decoder. The circuit can be used to drive 12 volt/25 watt lamps with the addition of two transistors per lamp as shown below in the section below titled "Interfacing 5 volt CMOS to 12 volt loads".

Simple Regulated 12 Volt Supply

Quickly find a reliable and cost effective a simple regulated 12 Volt power supply 

Notes:

This circuit above uses a 13 volt zener diode, D2 which provides the voltage regulation. Approximately 0.7 Volts are dropped across the transistors b-e junction, leaving a higher current 12.3 Volt output supply. This circuit can supply loads of up to 500 mA. This circuit is also known as an amplified zen-er circuit.
 

Simple MHz Oscillator using an ATtiny15

Most engineers will recognise the problem: Your circuit needs a stable 1 or 2 MHz clock generator (in the author’s case it was for a Pong game using an old AY3-8500). A suitable crystal is not to hand so you cobble together an RC oscillator (there are plenty of circuits for such a design). Now it turns out that you don’t have exactly the right capacitor so a preset pot is add e d to allow some adjustment . Before you know it the clock circuit is taking up more space on the board than you had hoped. 

Providing the application does not demand a precise clock source a tiny 8-pin microcontroller may offer a better solution to the problem. It needs no additional external components and an old ATtiny15 can be found quite cheaply. Another advantage of the solution is that clock frequency adjustment does not involve changing external components and is not subject to component tolerances. 

The microcontroller’s internal RC oscillator is already accurately calibrated to 1.6 MHz. With its inbuilt PLL, internal Timer 1 can achieve up to 25.6 MHz [2]. By configuring internal dividers the timer can output a frequency in range of roughly 50 kHz up to 12 MHz from an output pin. The difference between calculated and the actual output frequency increases at higher frequencies. A meaningful upper limit of about 2 MHz is a practical value and even at this frequency the deviation from the calculated value is about 15 %.

MHz Oscillator using an ATtiny15 Schematic

MHz Oscillator using an ATtiny15 Circuit Diagram

The circuit diagram could hardly be simpler, aside from the power supply connections the output signal on pin 6 (PB1) is the only other connection necessary.The example program, written in Assembler is just 15 lines long! With a program this short comments are almost super fluous but are included for clarity. The code can be downloaded from the Elektor website [1]. 

The program only needs to initialise the timer which then runs independently of processor control to output the clock sign al . The processor can then be put into sleep mode to memory used up the remaining 99 % is free for use for other tasks if required. 

The OSCCAL register contains a calibration byte which allows some adjustment of the CPU clock. This gives a certain degree of fine tuning of the output frequency. A recommendation in the Atmel data sheet indicates that the CPU clock frequency should not be greater than 1.75 MHz otherwise timer operation cannot be guaranteed. 

The more recent ATtiny45 can be substituted for the ATtiny15. In this case the CK SEL fuses should be set to put the chip’s Timer 1 into ATtiny15- compatible mode [3]. After adjustment to the program it will now be possible to obtain a higher (or more exact) frequency from the timer, the ATtiny45’s PLL can operate up to 64 MHz.  Link

New Photo Meter Assesses Ambient Light Schematic

Most PN-junction diodes can be used as photodiodes. While not optimized for this application, they do work. When the diode is reverse biased, it will produce a small photovoltaic output as the light level is increased. LEDs are particularly suited for this task because their housings are transparent.

You can construct a simple circuit that will assess the condition of ambient lighting and, because many LEDs’ packages are tinted to enhance their emitted color, may even yield a reasonable evaluation of the detected color. The results are not as effective as those obtained using a high-quality optical filter, which typically has narrow bandpass characteristics, but they can be quite acceptable. Though the design described here does not produce the accuracy of designs with laboratory-grade photodetectors and transimpedance amplifiers, it can be quickly assembled and will produce usable results at a low cost.

Three LEDs are used; experimentation will indicate which device has the best sensitivity to which color (Figure 1). The ambient light falling on the LEDs causes some current flow—typically in the range of 10 to 100 nA—through each LED, depending on the applied illumination level. This current flows through the base of a transistor, Q1, and is amplified. Q1’s collector current then splits between potentiometer R4, which acts as a first-stage gain calibration, and the base of Q2.

Photo Meter Assesses Ambient Light Schematic
Light-Circuit-Diagram
Q2 provides further amplification and drives the left side of a bridge circuit (D1A and D1B). Note that R2/D1 and R3/D2 form a balanced bridge. Q2’s collector current provides a slight imbalance to the bridge. The meter, M, measures this imbalance. R5 adjusts the sensitivity of the meter. Set R4 and R5 such that the meter has an appropriate deflection. R4 is useful for selecting the quiescent point; R5 is useful for adjusting the sensitivity.

Before building the circuit, check whether the LEDs can be used as photo sensors. To determine whether a given LED is a good photodiode, check the voltage across the LED using a common digital multimeter set to its most sensitive range—typically 200 mV. Typical output voltage should be approximately 0.3 to 1 mV with typical office illumination. link

Three Flashing LED Doorbells For The Hearing Impaired

When the push switch is operated - the buzzer will sound and the LEDs will begin to flash. For the hearing members of the household - the buzzer acts as a regular doorbell. It also re-assures the visitor that the doorbell is working.

When the push switch is released the buzzer will stop - but the LEDs will continue to flash. The length of time they will go on flashing is set by the values of R2 & C1. With the values shown in the diagram - the LEDs will flash for a further 30 seconds or so. If you make R2 a variable resistor, you can adjust the time period. If you want longer than 30 seconds - increase the value of C1 or R2.

Flashing-LED-Doorbells-Circuit-Diagram

The last circuit will flash up to two groups of 3 LEDs in tandem. This circuit will flash the two groups alternately. The alternate flashing creates the illusion of movement - and makes the display more eye-catching. Note that - although I've drawn the two groups of LEDs side by side - the individual LEDs can be mounted in any pattern you like.

LED-Doorbells-Circuit-Diagram
The main difference between this circuit and the last one - is the addition of the two transistor switches. The switches will each flash up to 15 groups of 3 LEDs. And - because they are getting power directly from the battery - the LEDs will glow at their full brilliance.
Three-Flashing LED-Doorbells-Circuit-Diagram
The Support Material for these circuits includes detailed circuit descriptions - and all the information you need to adapt them to a different supply voltage. link

Build A Relay Toggle Switch

Half of RL1 and RL2 manipulate the switching and the other is connected to an application. Relays are 200 ohms above ground and at one point are referenced to positive that turns them off.

Description:

RL1 (which is off) applies plus voltage from its armature and latches RL2 “on”. The application terminals are set to [A]. The condition changes when S1 is activated, voltage is applied to RL2 latching RL1 “on” releasing S1 turns RL2 “off”. RL2’s armature is then directed to R1. Terminals are set to [B].

When S1 is pressed again, the relays negative side are referenced to positive, RL1 turns “off” (there’s no current flow). RL2 turns “on” when S1 is released, terminals are set to [A]. There is slight lag between relays depending on how long S1 is held.

Relay Toggle Switch Circuit Diagram

Note: 

If different relays are used, adjustment of R1’s value may be required. For example, OEG relays (12vdc, 270 ohm coil) need R1 at 60 - 70 ohms. The prime motivation for this design was to avoid using toggle switches for my audio control panel. Another plus, it can be controlled from a remote transmitted pulse.Link

Build an IR Beam Breaker Circuit Diagram

IR Beam Breaker Circuit Diagram. This is an Infrared beam breaking alarm ideal to use in entry or passages.It is based on the working of the popular IR sensor Module TSOP 1738 which senses 38 kHz Infrared pulses from the IR LED of the transmitter. Range of the circuit is about 5 meters if the transmitter and receiver are properly aligned

TSOP 1738 IR sensor module responds to only 38kHz pulsed infrared rays. It will not sense continuous IR ray from the IR LED.So a transmitter circuit(as one in TV remote handset) based on 555 IC is required. Any standard transmitter circuit based on 555 IC can be used. But its output should be 38kHz exactly. TSOP 1738 gives 5 volt output and 5mA current in the off position.

 That is when IR rays are not available.Its output is current sinking so that when it receives 38kHz IR rays, output becomes zero.Pin 2 of the module should get a supply voltage between 4.5 to 6 volts.Higher voltage above 6 volts will destroy the device. The module is generally immune to ambient light, but may responds to sources of noice such as electronic ballasts.

IR Beam Breaker Schematics

IR Beam breaker circuit

Out put from the IR module is given to the inverting input of IC1. LM311 is a precision voltage comparator . It looks like the common Op Amps like LM741, CA3130,CA 3140,TL071 etc.But its pin connections and output are different from other Op Amps.

Pin 2 Non inverting
Pin3 Inverting
Pin 1 Ground
Pin8 Vcc
Pin7 Current sinking Output
IR Beam breaker circuit

The non inverting input of IC1 is connected to a potential divider comprising R1 and R2. When the IR sensor gets IR pulses from the transmitter, output of IC1 remains high. When the IR beam breaks, output from the sensor becomes high which triggers IC1. It then sinks current to activate buzzer and LED. link

Simple Dual Voltage Power Supply 12 Volt

This is the simple circuit diagram of Dual Voltage Power Supply. It is used for Misc. application. This circuit is called regulated power supply. For this reason the main component of this circuit is Regulator IC. It also needs few components to built. The regulator 7812 is the positive voltage regulator and 7912 is the negative voltage regulator. 

Simple Dual Voltage Power Supply 12 Volt


You can also use 7809 for 9 volt positive power supply and 7909 for negative voltage power supply. It regulates voltage from 24Volt to 12 Volt (DC). The transformer input is 110Volt to 220Volt (AC) and the output must be between 12Volt to 24Volt (AC) and current must be 500mA. In this circuit some capacitors are used as a filter for removing repole.

Reliable 6 Watt Hi Fi Audio Amplifier Using TDA2613

A 6 watt audio amplifier circuit using TDA2613 is shown here. TDA2613 is an integrated Hi-Fi  audio amplifier IC from Philips Semiconductors. The IC is switch ON / switch OFF click proof, short circuit proof, thermally protected and is available in 9 pin single in line plastic package. In the given circuit, TDA2613 is wired to operate from a single supply.

Capacitor C4 is the input DC decoupler while capacitors C5, C6 are power supply filters. Input audio is fed to the non inverting input through capacitor C4. Inverting input and Vp/2 pins of the IC are tied together and connected to ground through capacitor C3. Capacitor C2 couples the speaker to the ICs output and the network comprising of capacitor C1 and resistor R1 improves the high frequency stability.

Reliable 6 Watt Hi Fi Audio Amplifier Circuit diagram

6 Watt Hi Fi Audio Amplifier using TDA2613

Notes.
  • Assemble the circuit on good quality PCB.
  • Supply voltage (Vs) can be anything between 15 to 24V DC.
  • Heat sink is necessary for TDA2613.
  • Do not give more than 24V to TDA2613.

High LASER Power Supply

If you have ever worked with lasers, you know how fun and interesting it can be, you also know how expensive it can be. The high voltage power supplies for the laser tubes are often more expensive then the tubes themselves. This supply can be built with commmon parts, most of which you probably already have in your junk box. The secret is the transformer used. It is a common 9V 1A unit, connected backwards for step up. 
 
Please note that some people may have trouble with this supply. This is due to the slight difference in transformers. For more information on LASER power supplies Link

CAUTION:LASER RADIATION

Schematic


This is the schematic of the laser power supply

Parts


Part

Total Qty.

Description

Substitutions
R1
1
10 Ohm 10W Or Greater Resistor
R2
1
Ballast Resistor, See "Notes"
D1, D2, D3
3
1N4007 Silicon Diode
C1, C2, C3
3
0.1 uF 2000V Capacitor
T1
1
9V 1A Transformer
S1
1
115V 2A SPST Switch
MISC
1
Case, Wire, Binding Posts (for output), Line Cord

Notes

1. T1 is an ordinary 9V 1A transformer connected backwards for step up.
2. R1 MUST be installed on a LARGE heatsink. A good heatsink is the metal case the supply is built in.
3. R2 Protects the laser tube from excess current. It should be soldered directly to the anode terminal on the tube. To find R2, start with a 500K 10W resistor and work down until the tube lights and remains stable.
4. If you have trouble with the tube not starting easily, use a longer anode lead that is wrapped around the tube.
5. Depending on the transformer you use, the circuit may or may not work. I cannot guarantee the operation of this circuit. Build at your own risk.

Temperature Monitor Circuit Diagram

A simple op-amp circuit that will trigger a relay when a preset temperature is reached. Please note that there is no hysteresis in this circuit, so that if the temperature changes rapidly, then the relay may switch rapidly.

Temperature Monitor Circuit Diagram

Temperature-Monitor-Circuit-Diagram

Circuit Notes:
This circuit uses an ordinary NTC thermistor with a resistance of 47k at room temperature. A suitable part from Maplin Electronics is FX42V. The circuit is set in balance by adjusting the the 47k potentiometer. Any change in temperature will alter the balance of the circuit, the output of the op-amp will change and energize the relay. Swapping the position of the thermistor and 47k resistor makes a cold or frost alarm.

Calibration:
At room temperature (25 degrees Celsius) a 47k NTC thermistor resistance is approximately 47k. The non-inverting op-amp input will then be roughly half the supply voltage, adjusting the 47k pot should allow the relay to close or remain open. To calibrate the device, the thermistor ideally needs to be at the required operating temperature. If this is for example, a hot water tank, then the resistance will decrease, one way to do this is use a multimeter on the resistance scale, read the thermistors resistance and then set the preset so that the circuit triggers at this temperature.

Please note that if the temperature then falls, the relay will de-energize. If the environment temperatures changes rapidly, then the relay may chatter, as there is no hysteresis in this circuit.

Hysteresis, allows a small amount of "backlash" to be tolerated. With a circuit employing hysteresis, there will be no relay chatter and the circuit will trigger at a defined temperature and require a different temperature to return to the normal state. Hysteresis can be applied to the circuit using feedback, try a 1Meg resistor between op-amp output, pin 6 and the non-inverting input pin 2 to give the circuit hysteresis.

Without offset null adjustment, the output of the 741 IC will be around 2 Volts (quiescent) swinging to nearly full supply when triggered. The 4.7k and 1k resistor form a potential divder so that under quiescent conditions the transistor will be off. Quiescent or steady state means no signal, or in this case (when the temperature does not cause the output to swing to full voltage) link

Simple Energy-Saving Switch Schematic Diagram

Lights do not always need to be on at full power. Often it would be useful to be able to turn off the more powerful lights to achieve softer illumination, but this requires an installation with two separately-switch-able circuits, which is not always available.
 Energy-Saving Switch Circuit Image
Switch-Circuit-Image
If the effort of chasing out channels and replastering for a complete new circuit is too much, then this circuit might help. Normal operation of the light switch gives gentle illumination (LA1). For more light, simply turn the switch off and then immediately (within 1 s) on again. The circuit returns to the gentle light set-ting when switched off for more than 3 s. There is no need to replace the light switch with a dual version: simply insert this circuit between switch and lamp.

Energy-Saving Switch Circuit Diagram
Energy-saving Switch-Circuit-Diagram
Parts List:
Resistors:
R1 = 100Ω
R2 = 680Ω
Capacitor:
C1 = 4700µF 25 V
Semiconductors:
D1,D2 = 1N4001
Miscellaneous:
K1,K2,K3 = 2-way PCB terminal
block, lead pitch 7.5 mm
F1 = fuse, 4AT (time lag) with PCB
mount holder
TR1 = mains transformer, 12V @ 1.5
VA, short-circuit proof, PCB mount
B1 = B80C1400, round case (80V
piv, 1.4A)
RE1 = power relay, 12V, 2 x c/o,
PCB mount
RE2 = miniature relay, 12V, 2 x c/o,
PCB moun

How does it work?
Almost immediately after switch-on, fast-acting miniature relay RE2 pulls in, since it is connected directly after the bridge rectifier. Its nor-mallyclosed contact then isolates RE1 from the supply, and thus current flows to LA1 via RE1’s normally-closed con-tact. RE1 does not have time to pull in as it is a power relay and thus relatively slow. Its response is also slowed down by the time constant of R1 and C1. If the current through the light switch is briefly interrupted, RE2 drops out immediately. There is enough energy stored in C1 to activate RE1, which then holds itself pulled in via a second, normally-open, contact. If current starts to flow again through the light switch within 1s, LA2 will light. To switch LA1 back on it is necessary to turn the light switch off for more than 3 s, so that C1 can discharge via R2 and RE1. The printed circuit board can be built into a well insulating plastic enclosure or be incorporated into a light fitting if there is sufficient space.
PCB-Layout
Circuit-Diagram
Caution:
the printed circuit board is connected directly to the mains-powered lighting circuit. Every precaution must be taken to prevent touching any component or tracks, which carry dangerous voltages. The circuit must be built into a well insulated ABS plastic enclosure.Link

Simple Indicator for Dynamic Limiter Schematic Diagram

The indicator described here is specifically designed for adjusting the dynamic limiter described elsewhere in this edition and checking whether the maximum level of the reference voltage (P1) needs to be modified. Her e we use a 4 -to -16 decoder IC (type 4514) to monitor the state of the four-bit up/down counter in the limiter circuit. This IC can be powered from the ±8 V supply voltages of the limiter. The limiter board has a 6-way connector (K5) that provides access to the four counter outputs and the sup-ply voltages. Connector K1 of the indicator circuit can be connected to K5 on the limiter board.
. .
 Indicator for Dynamic Limiter Schematic
 Simple Indicator for Dynamic Limiter Schematic Diagram

One output of the 4514 goes high for each unique 4-bit combination on its inputs, while the other outputs remain logic Low. A separate current-limiting resistor is connected in series with each LED. It was not possible to use a common cathode resistor here because most LEDs have a maximum reverse blocking voltage of only 5 V, while the supply voltage here (16 V) is a good deal higher.

The 16 LEDs ar ranged in a r ow pr ov ide a ‘fluid’ indication of the control process. You can enhance the display by using different colours for the first and last LEDs, such as red for D1 (maximum gain) and green for D16 (minimum gain), with yellow for the rest of the LEDs. While observing signals from various sources (TV set, DVD, media player, etc.), you can easily use the 16 LEDS to monitor the behaviour of the limiter and adjust the setting of potentiometer P1 in the limiter circuit. It must be set such that D16 only lights up at the maximum signal level. If this is not possible and D16 remains lit a good deal of the time regardless of the position of P1, it will be necessar y to increase the value of P1. Of course, it is also poss-ible to adjust P1 so the strongest signal source extends slightly above the control range of the limiter.

This circuit can easily be assembled on a small piece of prototyping board. The current consumption is around 4 mA. link

Simple Electromagnetic Field Detector Schematic

This circuit is sensitive to low frequency electromagnetic radiation and will detect for example hidden wiring or the field that encompasses a transformer. Pickup is by a radial type inductor, used as a probe which responds well to low frequency changing magnetic and electric fields. Ordinary headphones are used to for detection. The field that surrounds a transformer is heard as a 50 or 60Hz buzz. The circuit is below:-

Electromagnetic Field Detector Circuit Diagram
Detector-Circuit-Diagram
Notes:
I threaded a length of screened cable through an old pen tube and soldered the ends to a radial type can inductor. I used 1mH. The inductor fitted snugly into the pen tube. The opposite end of the cable connects to the input of the op-amp. Any op-amp should work here, possibly better results may be achieved with a low noise FET type such as the LF351. The 2M2 potentiometer acts as a gain control and the output is a pair of headphones. Stereo types can be used if they are wired as mono. I used an 8 ohm type, but the circuit should work equally well with higher impedance types. The probe (shown below) may be connected via screened cable and a 3.5mm stereo plug and socket.


Field-Detector-Circuit-Diagram
Detection:
The sensitivity of this circuit is good. Mains wiring buried an inch in plaster can be detected with precision. A small load on the electric supply is all that is needed; a 20 watt desk lamp or similar will suffice. The hum field surrounding a transformer can be detected oat over 7 inches. Domestic appliances such as videos and alarm clocks all produce interference which can be heard with the probe. The electric field surrounding a loudspeaker or earpiece can also be heard. Try lifting a telephone and place the probe near the earpiece. A telephone pickup coil can be used in place of the inductor if desired. I will make an improved version of this circuit with a meter output later. link

SRPP Headphone Amplifier Circuit Diagram

Mention valve amplifiers and many designers go depressive instantly over the thought of a suitable output transformer. The part will be in the history books forever as esoteric, bulky and expensive because, it says, it is designed and manufactured for a specific valve constellation and output power. There exist thick books on valve output transformers, as well as gurus lecturing on them and winding them by hand. However, with some concessions to distortion (but keeping a lot of money in your pocket) a circuit configuration known as SRPP (series regulated push-pull) allows a low-power valve amplifier to be built that does not require the infamous output transformer. SRPP is normally used for preamplifier stages only, employing two triodes in what looks like a cascade arrangement.

 SRPP Headphone Amplifier Circuit Diagram

Amplifier-Circuit-Diagram
Here we propose the use of two EL84 (6BQ5) power pentodes in triode SRPP configuration. The reasons for using the EL84 (6CA5) are mainly that it’s cheap, widely available and forgiving of the odd overload condition. Here, two of these valves are SRPP’d into an amplifier that’s sure to reproduce that ‘warm thermionic sound’ so much in demand these days.

Before describing the circuit operation, it must be mentioned that construction of this circuit must not be attempted unless you have experience in working with valves at high voltages, or can rely on the advice and assistance of an ‘old hand’. As a safety measure, two anti-series connected zener diodes are f it ted at the amplifier output. These devices protect the output (i.e. your head-phones and ears) against possibly dangerous voltages at switch-on,or when output capacitor C3 breaks down.

The power supply is dimensioned for two channels, i.e. a stereo version of the amplifier. The values in brackets are for Elektor readers on 120 VAC power. Note the doubled values of fuses F1 and F3 in the AC primary circuits. The PSU is a conventional design, possibly with the exception of the 6.3 V heater voltage being raised to a level of about +80 V through voltage divider R7-R8. This is done to prevent exceeding the maximum cathode-heater voltage specified for the EL84 (6CA5). R6 is a bleeder resistor emptying the reservoir capacitors C8 and C9 in a quick but control-led manner when the amplifier is switched off. Rectifier diodes D3–D6 each have an anti-rattle capacitor across them.

In the amplifier, assuming the valves used have roughly the same emission, the half-voltage level of about +145 V exists at the junction of the anode of V1 and the control grid of V2. The SRPP is no exception to the rule that high quality, (preferably) new capacitors are essential not just for reproducibility and sound fidelity, but also for safety.

Made Dual Regulated Power Supply

http://diagramdigital.blogspot.com/2012/12/made-dual-regulated-power-supply.html 

Notes:
In this circuit, the 7815 regulatates the positive supply, and the 7915 regulates the negative supply. The transformer should have a primary rating of 240/220 volts for europe, or 120 volts for North America. The centre tapped secondary coil should be rated about 18 volts at 1 amp or higher, allowing for losses in the regulator. An application for this type of circuit would be for a small regulated bench power supply.

Simple UPS Power Supply

This circuit is a simple form of the commercial UPS, the circuit provides a constant regulated 5 Volt output and an unregulated 12 Volt supply. In the event of electrical supply line failure the battery takes over, with no spikes on the regulated supply.

Simple UPS Power Supply
This circuit can be adapted for other regulated and unregulated voltages by using different regulators and batteries. For a 15 Volt regulated supply use two 12 Volt batteries in series and a 7815 regulator. There is a lot of flexibility in this circuit.

TR1 has a primary matched to the local electrical supply which is 240 Volts in the UK. The secondary winding should be rated at least 12 Volts at 2 amp, but can be higher, for example 15 Volts. FS1 is a slow blow type and protects against short circuits on the output, or indeed a faulty cell in a rechargeable battery. LED 1 will light ONLY when the electricity supply is present, with a power failure the LED will go out and output voltage is maintained by the battery. The circuit below simulates a working circuit with mains power applied:
 


mains on

Between terminals VP1 and VP3 the nominal unregulated supply is available and a 5 Volt regulated supply between VP1 and VP2. Resistor R1 and D1 are the charging path for battery B1. D1 and D3 prevent LED1 being illuminated under power fail conditions. The battery is designed to be trickle charged, charging current defined as :-



(VP5 - 0.6 ) / R1
where VP5 is the unregulated DC power supply voltage.

D2 must be included in the circuit, without D2 the battery would charge from the full supply voltage without current limit, which would cause damage and overheating of some rechargeable batteries. An electrical power outage is simulated below:



power failure

Note that in all cases the 5 Volt regulated supply is maintained constantly, whilst the unregulated supply will vary a few volts.

Standby Capacity
The ability to maintain the regulated supply with no electrical supply depends on the load taken from the UPS and also the Ampere hour capacity of the battery. If you were using a 7A/h 12 Volt battery and load from the 5 Volt regulator was 0.5 Amp (and no load from the unregulated supply) then the regulated supply would be maintained for around 14 hours. Greater A/h capacity batteries would provide a longer standby time, and vice versa.

Automatic Car Alarm Circuit Diagram

Automatic Car Alarm Circuit Diagram. Even the best car alarm is useless if you forget to set it upon leaving your car, whence this circuit. The relay has a make and a break contact: the  former is necessary to delay the switching in of the  alarm after you have got out of your car, and the  latter serves to switch on the car alarm proper. Immediately on re-entering your car, you must press the hidden switch, Si. This causes silicon-controlled rectifier Thi to conduct so that the relay is energized. At the same time, the green LED lights to indicate that the alarm is switched off.  

Automatic Car Alarm Circuit Diagram
Best Automatic Car Alarm-Circuit Daigram
 Best Automatic Car Alarm Circuit Diagram

As soon as the ignition is switched off, T, is off, T2  is on, and the buzzer sounds. At the same time,  monostable IC1 is triggered, which causes T3 to  conduct and the red LED to light. The silicon- controlled rectifier is then off, and D4 is reverse  biased, but the relay remains energized via its make  contact for a short time, preset by Pi As soon as this  time has lapsed, the relay returns to its quiescent  state, and the alarm is set via the break contact. The  delay time can be set to a maximum of about 1 minute.

Emergency Siren Simulator Circuit Diagram

This siren circuit simulates police, fire or other emergency sirens that produce an up and down wail.
 .
Simple Emergency Siren Simulator Circuit Diagram
Emergency Siren Simulator Circuit Diagram

The heart of the circuit is the two transistor flasher with frequency modulation applied to the base of the first transistor. When the pushbutton is depressed, the frequency of oscillation climbs to a peak and when the button is released, the frequency descends due to the rising and falling voltage on the 22 uF capacitor. The rate of change is determined by the capacitor value and the 100k resistor from the pushbutton.  The oscillation eventually stops if the button is not depressed and the current consumption drops to a tiny level so no power switch is needed.

The 0.1 uF determines the pitch of the siren: A 0.047uF will give a higher pitch siren and a 0.001 uF will give an ultrasonic (at least for me, anyway) siren from 15 to 30 kHz which might have an interesting effect on the neighborhood dogs! The 33k resistor from the collector of the PNP to the base of the NPN widens the pulse to the speaker giving greater volume.

The flasher circuit drives a PNP transistor which powers the speaker. This transistor may be a small-signal transistor like the 2N4403 in most applications since it will not dissipate much power thanks to the rapid on-and-off switching. The 100 ohm and 100uF capacitor in series with the speaker limit the current to about 60 mA and they may be replaced with a short circuit for a louder siren as long as the transistor can take the increased current. The prototype drew about 120 mA when shorted which is fine for the 2N4403.

Transistor substitutions should be fine - try just about any small-signal transistors but avoid high frequency types so that you do not end up with unwanted RF oscillations. link

Simple Phono Preamplifier Circuit Diagram

This is a Simple Phono Preamplifier Circuit Diagram. In recent years, following CD's introduction, vinyl recordings are almost disappeared. Nevertheless, a phono preamplifier is still useful for listening old vinyl discs from a well preserved collection. This simple but efficient circuit devised for cheap moving-magnet cartridges, can be used in connection with the audio power amplifiers shown in these web pages, featuring low noise, good RIAA frequency response curve, low distortion and good high frequency transients behavior due to passive equalization in the 1 to 20 KHz range.
Simple Phono Preamplifier Circuit Diagram


Parts:

R1 = 47K
R2 = 100R
R2 = 6.8K
R4 = 68K
R5 = 2.7K-1/2W
R6 = 2.7K-1/2W
R7 = 2.2K
R8 = 39K
C1 = 100uF-25V
C2 = 100uF-25V
C3 = 100uF-25V
C4 = 47nF-63V
C5 = 47nF-63V
D1 = BZX79C18
D2 = BZX79C18
Q1 = BC337
Q2 = BC327
J1 = RCA Jack
IC1 = LM833, Opamp

Notes:
  • R2, R3, R4, R7, R8, C4 & C5 should be low tolerance types.
  • Schematic shows left channel and power supply.
  • For stereo operation R1, R2, R3, R4, R7, R8; J1; C1, C4 & C5 must be doubled.
  • Numbers in parentheses show IC1 right channe

Lights Control for Model Cars Circuit Diagram

The author gave his partner a radio controlled (RC) model car as a gif t. She found it a lot of fun, but thought that adding realistic lights would be a definite improvement. So the author went back to his shed, plugged in his soldering iron, and set to work equipping the car with realistic indicators, headlights, tail lights and brake lights.

Lights Control for Model Cars Circuit Diagram

The basic idea was to tap into the signal from the radio control receiver and, with a bit of help from a microcontroller, simulate indicators using flashing yellow LEDs and brake lights using red LEDs. Further red LEDs are used for the tail lights, and white LEDs for the headlights. Connectors JP4 and JP5 (channel 0) are wired in parallel, as are JP6 and JP7 (channel 1), allowing the circuit to be inserted into the servo control cables for the steering and drive motor respectively. The ATtiny45 micro-controller takes power from the radio receiver via diode D1. T1 and T2 buffer the servo signals to protect IC1’s inputs from damage. 
IC1 analyses the PWM servo signals and gen-erates suitable outputs to switch the LEDs via the driver transistors. T3 drives the two left indicators (yellow), T4 the two right indica-tors, and T5 the brake LEDs (red). The red tail lights (JP2-8 and JP2-8) and the white head-lights (JP2-9 and JP2-10) are lit continuously. The brake lights are driven with a full 20 mA, so that they are noticeably brighter than the tail lights, which only receive 5 mA. If you wish to combine the functions of tail light and brake light, saving t wo red LEDs, sim-ply connect pin 10 of JP2 to pin 14 and pin 12 to pin 16. Then connect the two combined brake/tail LEDs either at JP2-5 and JP2-6 or at JP2-7 and JP2-8.

JP3 is provided to allow the use of a separate lighting supply. This can either be connected to an additional four-cell battery pack or to the main supply for the drive motor. The val-ues given for resistors R8 to R17 are suitable for use with a 4.8 V supply. JP2 can take the form of a 2x10 header.

As usual the sof t ware is available as a free download from the Elektor web pages accom-panying this article[1], and ready-programmed microcontrollers are also available. The microcontroller must be taught what servo signals correspond to left and right turns, and to full throttle and full braking. First connect the fin-ished circuit to the radio control electronics in the car, making sure everything is switched of f. Fit jumper JP1 to enable configuration mode, switch on the radio control transmit-ter, set all proportional controls to their cen-tre positions, and then switch on the receiver. The indicator LEDs should first flash on both sides. Then the car will indicate left for 3 s: during this time quickly turn the steering on the radio control transmitter fully to the left and the throt tle to full reverse (maximum braking).

Hold the controls in this position until the car starts to indicate right. Then set the controls to their opposite extremes and hold them there until both sides flash again. Now, if the car has an internal combustion engine (and so cannot go in reverse), keep the throttle control on full; if the car has an electric motor, set the throttle to full reverse. Hold this position while both sides are flashing. Configuration is now complete and JP1 can be removed. If you make a mistake during the configuration process, start again from the beginning.

Author: Manfred Stratmann - Copyright : Elektor

Use Dual LED With Logic Probe Yields Circuit Diagram

This is the simple Logic probe yields three discrete states circuit diagram.The circuit uses a dual LED. When power is applied to the probe throughthe power leads, and the input is touched to a low level or ground, Ql is cut off. This will cause Q2 to conduct since the base is positive with respect to the emitter. With Ql cut off and Q2 conducting, the green diode of the dual LED will be forward biased, yielding a green output. 

 
 Logic Probe Yields Circuit Diagram

Touching the probe tip to a high level will cause Ql and Q2 to complement, and the red diode will be forward biased, yielding a red output from the LED An alternating signal will cause alternating conduction of the red and green diodes and will yield an indication approximately amber. In this manner, both static and dynamic signals can be traced with the logic probe.

Hybrid Headphone Amplifier Circuit Diagram

Potentially, headphone listening can be technically superior since room reflections are eliminated and the intimate contact between transducer and ear mean that only tiny amounts of power are required. The small power requirement means that transducers can be operated at a small fraction of their full excursion capabilities thus reducing THD and other non-linear distortions. This design of a dedicated headphones amplifier is potentially controversial in that it has unity voltage gain and employs valves and transistors in the same design. Normal headphones have an impedance of 32R per channel. The usual standard line output of 775 mV to which all quality equipment aspires will generate a power of U2 / R = 0.7752 / 32 = 18 mW per channel across a headphone of this impedance.

Hybrid Headphone Amplifier Circuit Diagram


Hybrid Headphone Amplifier Circuit Diagram


An examination of available headphones at well known high street emporiums revealed that the sensitivity varied from 96 dB to 103db/mW! So, in practice the circuit will only require unity gain to reach deafening levels. As a unity gain design is required it is quite possible to employ a low distortion output stage. The obvious choice is an emitter follower. This has nearly unity gain combined with a large amount of local feedback. Unfortunately the output impedance of an emitter follower is dependent upon the source impedance. With a volume control, or even with different signal sources this will vary and could produce small but audible changes in sound quality.

To prevent this, the output stage is driven by a cathode follower,based around an ECC82 valve (US equivalent: 12AU7).

This device, as opposed to a transistor configuration, enables the output stage to be driven with a constant value, low impedance. In other words, the signal from the low impedance point is used to drive the high impedance of the output stage, a situation which promotes low overall THD. At the modest output powers required of the circuit, the only sensible choice is a Class A circuit. In this case the much vaunted single-ended output stage is employed and that comprises of T3 and constant current source T1-T2.

The constant current is set by the Vbe voltage of T1 applied across R5 With its value of 22R, the current is set at 27 mA. T3 is used in the emitter follower mode with high input impedance and low output impedance. Indeed the main problem of using a valve at low voltages is that it’s fairly difficult to get any real current drain. In order to prevent distortion the output stage shouldn’t be allowed to load the valve. This is down to the choice of output device. A BC517 is used for T3 because of its high current gain, 30,000 at 2 mA! Since we have a low impedance output stage, the load may be capacitively coupled via C4. Some purists may baulk at the idea of using an electrolytic for this job but he fact remains that distortion generated by capacitive coupling is at least two orders of magnitude lower than transformer coupling.

The rest of the circuitry is used to condition the various voltages used by the circuit. In order to obtain a linear output the valve grid needs to be biased at half the supply voltage. This is the function of the voltage divider R4 and R2. Input signals are coupled into the circuit via C1 and R1. R1, connected between the voltage divider and V1’s grid defines the input impedance of the circuit. C1 has sufficiently large a value to ensure response down to 2 Hz. Although the circuit does a good job of rejecting line noise on its own due to the high impedance of V1’s anode and T3’s collector current, it needs a little help to obtain a silent background in the absence of signal.

The ‘help’ is in the form of the capacitance multiplier circuit built around T5. Another BC517 is used here to avoid loading of the filter comprising R7 and C5. In principle the capacitance of C5 is multiplied by the gain of T5. In practice the smooth dc applied to T5’s base appears at low impedance at its emitter. An important added advantage is that the supply voltage is applied slowly on powering up. This is of course due to the time taken to fully charge C5 via R7. No trace of hum or ripple can be seen here on the ‘scope. C2 is used to ensure stability at RF. The DC supply is also used to run the valve heater. The ECC82 has an advantage here in that its heater can be connected for operate from 12.6 V. To run it T4 is used as a series pass element. Base voltage is obtained from the emitter of T5. T4 has very low output impedance, about 160 mR and this helps to prevent extraneous signals being picked up from the heater wiring. Connecting the transistor base to C5 also lets the valve heater warm up gently. A couple of volts only are lost across T4 and although the device runs warm it doesn’t require a heat-sink.

Author: Jeff Macaulay - Copyright: Elektor Electronics

Lead Acid Battery Protector

The circuit described here can be used to  ensure  that  a  12 V  sealed  lead  acid  (SLA)  gel battery isn’t discharged too deeply. The  principal part of the circuit is a bistable relay,  which is driven by the output of an op amp. 

Lead Acid Battery Protector Circuit diagram :

Lead Acid Battery Protector dd
Lead Acid Battery Protector Circuit Diagram
The battery voltage is first reduced via D1, R1,  P1 and R2, and then continuously compared  with a reference voltage set up by diode D2.  When the battery discharges too much and  its terminal voltage drops below the level  set by P1, the output of the opamp becomes  High, which causes the relay to toggle. This  in turn isolates the load from the battery. The  battery can be reconnected via S1 once the  battery has been replaced or recharged. 

The relay used in the prototype is a 5 V bistable type made by Omron (G6AK-234P-ST-US  5 VDC). The two windings of the relay each  have a resistance of 139 Ω (for the RAL-D 5  W-K made by Fujitsu this is 167 Ω). When the  battery voltage starts to become too low and  the relay is being reset the current consumption of the circuit is about 45 mA. Shortly  after the load has been disconnected, when the battery voltage rises above the reference  voltage again, the reset coil will no longer be  powered and the current consumption drops  back to about 2.5 mA. 

The range of P1 has intentionally been kept  small. With a reference voltage of 5.6 V (D2)  and a voltage drop of 0.64 V across D1, the circuit reacts within a voltage span of 11.5 V and  11.8 V. This range is obviously dependent on the zener diode used and the tolerance. 

For a greater span you can use a larger value  for P1 without any problems. With the potentiometer at its mid setting the circuit switches  at about 11.6 V.

Step-Up Converter For 20 LEDs

The circuit described here is a step-up converter to drive 20 LEDs, designed to be used as a home-made ceiling night light for a child’s bedroom. This kind of night light generally consists of a chain of Christmas tree lights with 20 bulbs each consuming 1 W, for a total power of 20 W. Here, in the interests of saving power and extending operating life, we update the idea with this simple circuit using LEDs. 

Power can be obtained from an unregulated 12 V mains adaptor, as long as it can deliver at least about 330 mA.  The circuit uses a low-cost current-mode controller type UCC3800N, reconfigured into voltage mode to create a step-up converter with simple compensation. By changing the external components the circuit can easily be modified for other applications. To use a current-mode controller as a voltage-mode controller it is necessary to couple a sawtooth ramp (rising from 0 V to 0.9 V) to the CS (current sense) pin, since this pin is also an input to the internal PWM comparator.

Step-Up Converter For 20 LEDs Circuit diagram :
Step-up Converter For 20 LEDs -Circuit-Diagram
Step-up Converter For 20 LEDs Circuit Diagram

The required ramp is present on the RC pin of the IC and is reduced to the correct voltage range by the voltage divider formed by R3 and R2. The RC network formed by R4 and C6 is dimensioned to set the switching frequency at approximately 525 kHz. The comparator compares the ramp with the divided-down version of the output voltage produced by the potential divider formed by R6 and R7. Trimmer P1 allows the output voltage to be adjusted. This enables the current through the LEDs to be set to a suitable value for the devices used. The UCC3800N starts up with an input voltage of 7.2 V and switches off again if the input voltage falls below 6.9 V. The circuit is designed so that output voltages of between 20 V and 60 V can be set using P1.

This should be adequate for most cases, since the minimum and maximum specified forward voltages for white LEDs are generally between 3 V and 4.5 V. For the two parallel chains of ten LEDs in series shown here a voltage of between 30 V and 45 V will be required. The power components D1, T1 and L1 are considerably over specified here, since the circuit was originally designed for a different application that required higher power. To adjust the circuit, the potentiometer should first be set to maximum resistance and a multimeter set to a 200 mA DC current range should be inserted in series with the output to the LEDs. Power can now be applied and P1 gradually turned until a constant current of 40mA flows. The step-up converter is now adjusted correctly and ready for use.


Cheap Bicycle Alarm Schematics Circuit

The author wanted a very cheap and simple alarm for some of his possessions, such as his electrically assisted bicycle. This alarm is based on a cheap window alarm, which has a time-switch added to it with a 1-minute time-out. The output  pulse of the 555 replaces the reed switch in the window alarm. The 555 is triggered by a sensor mounted near the front  wheel, in combination with a magnet that is mounted on the spokes. This sensor and the magnet were taken from a cheap bicycle computer. 

Cheap Bicycle Alarm Schematics Circuit diagram :
Cheap Bicycle Alarm-Circuit Diagram

The front wheel of the bicycle is kept unlocked, so that the reed  switch closes momentarily when the wheel turns. This  triggers the 555, which in turn activates the window alarm. The circuit around the 555 takes very little current and can  be powered by the batteries in the window alarm.  There  is just enough room  left inside the enclosure of the window  alarm to mount the time-switch inside it. 

The result is a very cheap, compact device, with only a single cable going to the reed switch on the front wheel. And the noise this thing produces is just unbelievable! After about one minute the noise stops and the alarm goes back into standby mode. The bicycle alarm should be mounted in an inconspicuous place, such as underneath the saddle, inside a (large) front light, in the battery compartment, etc.
Hopefully the alarm scares any potential thief away, or at least it makes other members of the public aware that something isn't quite right. 

Caution. The installation and use of this circuit may be subject to legal restrictions in your country, state or area.


Voltage Tester for Model Batteries

With a suitable load, the terminal voltage of a NiCd or lithium-ion battery is proportional to the amount of stored energy. This relationship, which is linear over a wide range, can be used to build a simple battery capacity meter. 

Voltage Tester for Model Batteries Circuit Image :
 Voltage Tester for Model Batteries Image
Voltage Tester for Model Batteries Circuit Image 

This model battery tester has two functions: it provides a load for the battery, and at the same time it measures the terminal voltage. In addition, both functions can be switched on or off via a model remote-control receiver, to avoid draining the battery when it is not necessary to make a measurement. The load network, which consists of a BC517 Darlington transistor (T2) and load resistor R11 (15 Ω /5 W), is readily evident. When the load is active, the base of T1 lies practically at ground level. Consequently, T1 conducts and allows one of the LEDs to be illuminated. 

Circuit Diagram :
Voltage Tester for Model Batteries-Circuit Diagram

The thoroughly familiar voltmeter circuit, which is based on the LM3914 LED driver, determines which LED is lit. The values of R6 and R7 depend on the type and number of cells in the battery. The objective here is not to measure the entire voltage range from 0 V, but rather to display the portion of the range between the fully charged voltage and the fully discharged voltage. Since a total of ten LEDs are used, the display is very precise. For a NiCd battery with four cells, the scale runs from 4.8 V to 5.5 V when R6 = R7 = 2 kΩ. The measurement scale for a lithium-ion battery with two cells ranges from 7.2 V to 8.0 V if R6 = 2 kΩ and R7 = 1 kΩ. 

For remote-control operation, both jumpers should be placed in the upper position (between pin 1 and the middle pin). In this configuration, either a positive or negative signal edge will start the measurement process. A positive edge triggers IC1a, whose output goes High and triggers IC1b. A negative edge has no effect on IC1a, but it triggers IC1b directly. In any case, the load will be activated for the duration of the pulse from monostable IC1b. Use P12 to set the pulse width of IC1a to an adequate value, taking care that it is shorter than the pulse width of IC1b. 

If the voltage tester is fitted into a remote-controlled model, you can replace the jumpers with simple wire bridges. However, if you want to use it for other purposes, such as measuring the amount of charge left in a video camera battery, it is recommended to connect double-throw push-button switches in place of JP1 and JP2. The normally closed contact corresponds to the upper jumper position,while the normally open contact corresponds to the lower position.

Parts :
Resistors:
R1,R2 = 47kΩ
R3 = 100kΩ
R4 = 500kΩ
R5 = 1kΩ
R6,R7 = see text (1% resistors!)
R8 = 1kΩ5
R9 = 1kΩ2
R10 = 330Ω
R11 = 15Ω 5W
R12 = 15kΩ
P1 = 100kΩ preset
Capacitors:
C1 = 10nF
C2 = 100nF
Semiconductors:
D1-D10 = LED, red, high effi-ciency
T1 = BC557
T2 = BC517
IC1 = 74HC123
IC2 = LM3914AN
Miscellaneous:
PC1,PC2,PC3 = solder pin
JP1,JP2 = jumper or pushbutton

PCB Layout :
B. PCB Laout
Voltage Tester for Model Batteries PCB Layout


Copyright : Elektor
◄ Newer Post Older Post ►
eXTReMe Tracker
 

Copyright 2011 Diagram Digital Schematic is proudly powered by blogger.com