Showing posts with label All Switches. Show all posts
Showing posts with label All Switches. Show all posts

Simple Automatic Switch For Audio Power Amplifier


Circuit of an automatic switch for audio power amplifier stage is presented here. The circuit uses stereo preamplifier output to detect the presence of audio to switch the audio power amplifier on only when audio is present. The circuit thus helps curtail power wastage. IC1 is used as an inverting adder. The input signals from left and right channels are combined to form a common signal for IC2, which is used as an open loop comparator. IC3 (NE556) is a dual timer. Its second section, i.e., IC3(b), is configured as monostable multivibrator. Output of IC3(b) is used to switch the power amplifier on or off through a Darlington pair formed by transistors T1 and T2. IC3(a) is used to trigger the monostable multivibrator whenever an input signal is sensed.

Circuit diagram:
Automatic Switch For Audio Power Amplifier-Circuit-Diagram
Automatic Switch For Audio Power Amplifier Circuit Diagram

Under ‘no signal’ condition, pin 3 of IC2 is negative with respect to its pin 2. Hence the output of IC2 is low and as a result output of IC3(a) is high. Since there is no trigger at pin 8 of IC3(b), the output of IC3(b) will be low and the amplifier will be off. When an input singal is applied to IC1, IC2 converts the inverted sum of the input signals into a rectangular waveform by comparing it with a constant voltage which can be controlled by varying potentiometer VR1. When the output of IC2 is high, output pin 5 of IC3 goes low, thus triggering the monostable multivibrator. As soon as the audio input to IC1 stops, pin 5 of IC3 goes high and pin 1 of IC3 discharges through capacitor C3, thus resetting the monostable multivibrator. 

Hence, as long as input signals are applied, the amplifier remains ‘on.’ When the input signals are removed, i.e., when signal level is zero, the amplifier switches off after the mono flip-flop delay period determined by the values of resistor R8 and capacitor C3. If no input signals are sensed within this time, the amplifier turns off—else it remains on. Power supply for the circuit can be obtained from the power supply of the amplifier. Hence, the circuit can be permanently fitted in the amplifier box itself. The main switch of the amplifier should be always kept on. Resistors R1 and R2 are used to divide single voltage supply into two equal parts.

Capacitors C1 and C2 are used as regulators and also as an AC bypass for input signals. Diode D1 is used so that loading fluctuations in power amplifier do not affect circuit regulation. Transisitor T2 acts as a high voltage switch which may be replaced by any other high voltage switching transistor satisfying amplifier current requirements. Value of resistor R10 should be modified for large current requirement. The LED glows when the amplifier is on. The circuit is very useful and relieves one from putting the amplifier on and off every time one plays a cassette or radio etc. 

Source : EFY

Mini RS232 Data Switch

Only simple materials and a little bit of skill are needed to build an RS232 switch. All that you need are two 9-way sub-D plugs with solder pins, a small piece of sheet aluminium, two sets of screw retainer posts, a 4-pole double-throw switch, a strain relief sleeve and a suitable plastic connector shell for a 25-way sub-D connector, with both in-line and right-angle cable entries (such as Conrad Electronics #711322). What is important is that the side cable entry together with its associated strain relief leaves enough room for the switch. If necessary, you may have to cut away a few square millimetres of the sidewall or a few ribs of the plastic shell.

Project image :
 Mini RS232 Data Switch Image
Mini RS232 Data Switch Image

The switch is operated via the in-line cable opening, as can be seen from the photo. A suitable switch with an overall length of 29 mm can be found in the Conrad catalogue under order number 708232. The only modification that must be made to the connector shell is to drill two holes for the retaining screws for the switch (M2.6 screws) at a spacing of 24 mm.

Mini RS232 Data Switch Circuit diagram :

Mini RS232 Data Switch Circuit-Diagram
Mini RS232 Data Switch Circuit Diagram

Connect the two sub-D connectors together using the piece of aluminium and the screw retainer posts. Then solder the cable to the connectors and the switch as indicated. The two connectors are wired somewhat differently. While the upper sub-D plug is connected 1:1 with the input cable (with the switch in the appropriate position), the DCD, DTR, DSR and RI pins of the lower connector are left open. This is because RTS and CTS are fully sufficient for handshaking, as long as DTR and DSR are connected to each other. The only leads that are switched are RXD, RTS, TSD and CTS. The ground potential is fed from the cable to both connectors. After everything has been properly soldered together, you can fit everything into the cable shell as shown.

12v Light / Dark Switch

Often, for certain low voltage lighting systems; you would like to turn off the lights during the bright light of the day.  Most commercial day/night switches are designed for AC lighting.  This hobby circuit below was designed for a 12v DC system.  But, it could be modified for other voltage as well.  It uses an inexpensive photo-transistor as the light detector.  An n-channel FET is used to switch power to the lights.  A transistor circuit is included to provide some hysteresis.  

This keeps the circuit from fluttering the light during the transition from day to night and night to day.  It is recommended that a plastic tube be placed over the transistor to prevent it from being illuminated by the lights it is controlling.  By selecting the appropriate power FET, the circuit could control over 100 watts worth of 12v lighting.   (July 22, 2008)


Circuit Project:12v LightDark Switch
Source: DiscoverCircuits

Solid-State Switch For Dc-Operated Gadgets

This solid state DC switch can be assembled using just three transistors and some passive components. It can be used to switch on one gadget while switching off the second gadget with momentary operation of switch. To reverse the operation, you just have to momentarily depress another switch. 

The circuit operates over 6V-15V DC supply voltage. It uses positive feedback from transistor T2 to transistor T1 to keep this transistor pair in latched state (on/ off), while the state of the third transistor stage is the complement of transistor T2’s conduction state. 

Initially when switch S3 is closed, both transistors T1 and T2 are off, as no forward bias is available to these, while the base of transistor T3 is effectively grounded via resistors R8 and R6 (shunted by the load of the first gadget). As a result, transistor T3 is forward biased and gadget 2 gets the supply. This is indicated by glowing of LED2. 

Solid-State Switch For Dc-Operated Gadgets Circuit diagram :


Solid-State Switch For Dc-Operated Gadgets-Circuit Diagram
Solid-State Switch For Dc-Operated Gadgets Circuit Diagram

When switch S1 is momentarily depressed, T1 gets the base drive and it grounds the base of transistor T2 via resistor R4. Hence transistor T2 (pnp) also conducts. The positive voltage available at the collector of transistor T2 is fed back to the base of transistor T1 via resistor R3. Hence a latch is formed and transistor T2 (as also transistor T1) continues to conduct, which activates gadget 1 and LED1 glows. 

Conduction of transistor T2 causes its collector to be pulled towards positive rail. Since the collector of T2 is connected to the base of pnp transistor T3, it causes transistor T3 to cut off, switching off the supply to gadget 2) as well as extinguishing LED2. This status is maintained until switch S2 is momentarily pressed. Depression of switch S2 effectively grounds the base of transistor T1, which cuts off and thus virtually opens the base-emitter circuit of transistor T2 and thus cutting it off. This is the same condition as was obtained initially. This condition can be reversed by momentarily pressing switch S1 as explained earlier. 

EFY lab note. During testing, it was noticed that for proper operation of the circuit, gadget 1 must draw a current of more than 100 mA (i.e. the resistance of gadget 1 must be less than 220 ohms) to sustain the latched ‘on’ state. But this stipulation is not applicable for gadget 2. A maximum current of 275 mA could be drawn by any gadget.



Author : Praveen Shanker - Copyright : EFY

12V Touch Switch Exciter

This circuit is designed to generate a 20KHz pseudo sine wave signal that can power about 50 remote touch activated switch circuits.  It can support a cable length of about 2500 feet.  A typical remote switch circuit is also shown as well as a receiver circuit for those switches.

12V Touch Switch Exciter  Circuit Diagram



12V Touch Switch Exciter  Circuit Diagram
Source: DiscoverCircuits

Sound Activated Switch II

With this sound activated switch, control by sound may be very useful, not just on a robot but also for a bit of home automation, for example a sound-activated light responding to a knock on the door or a hand clap. The light will be automatically switched off after a few seconds. An alternative use is burglar protection — if someone wants to open the door or break something the light will come on, suggesting that someone’s at home. The circuit can work from any 5–12 VDC regulated power supply provided a relay with the suitable coil voltage is used.

Sound activated switch circuit diagram

Circuit Project: Sound Activated Switch circuit

When you first connect the supply voltage to the sound activated switch circuit, the relay will be energised because of the effect of capacitor C2. Allow a few seconds for the relay to be switched off. You can increase or decrease the ‘on’ period by changing the value of C2. A higher value results in a longer ‘on’ period, and vice versa. Do not use a value greater than 47μF.

Biasing resistor R1 determines to a large extent the microphone sensitivity. An electret microphone usually has one internal FET inside which requires a bias voltage to operate. The optimum bias level for response to sound has to be found by trial and error. All relevant electrical safety precautions should be observed when connecting mains powered loads to the relay contacts.

Touch Switch II

This circuit uses a 555 timer as the bases of the touch switch. You can learn more about 555 timers in the Learning section on my site. When the plate is touched the 555 timer is triggered and the output on pin 3 goes high turning on the LED and the buzzer for a certain period of time. The time that the LED and the buzzer is on is based on the values of the capacitor and resistor connected to pin 6 & 7. The 10M resistor on pin 2 causes the the circuit to be very sensitive to the touch.

Touch Switch II Circuit Diagram


Touch Switch II Circuit Diagram

Low-Voltage Remote Mains Switch

This circuit allows a 240V mains appliance to be controlled remotely via low-voltage cabling and a pushbutton switch. The mains appliance (in this case, a light bulb) is switched with a suitably-rated relay. All of the electronics is housed in an ABS box located in proximity to the appliance. The pushbutton switch and plugpack are located remotely and can be wired up with 3-core alarm cable or similar. Cable lengths of 20m or more are feasible with this arrangement. When the switch (S1) is pressed, the input (pin 8) of IC1c is briefly pulled low via the 10mF capacitor, which is initially discharged.

Low-Voltage Remote Mains Switch Circuit diagram:

low-voltage-remote-mains-switch-circuit-diagramw
Low-Voltage Remote Mains Switch Circuit Diagram

The output (pin 10) immediately goes high and this is inverted and fed back to the second input (pin 9) via another gate in the quad NAND package (IC1d). In conjunction with the 1MW resistor and 470nF capacitor, IC1d eliminates the effects of contact "bounce" by ensuring that IC1c’s output remains high for a predetermined period. The output from IC1c drives the clock input of a 4013 D-type flip-flop (IC2). The flipflop is wired for a "toggle" function by virtue of the Q-bar connection back to the D input. A 2.2MW resistor and 100nF capacitor improve circuit noise immunity. Each time the switch is pressed, the flipflop output (pin 13) toggles, switching the transistor (Q1) and relay on or off. Note that all mains wiring must be properly installed and completely insulated so that there is no possibility of it contacting the low-voltage side of the circuit.

Simple Electronic Lock

There are six (or more) push switches. To 'unlock' you must press all the correct ones at the same time, but not press any of the cancel switches. Pressing just one cancel switch will prevent the circuit unlocking. When the circuit unlocks it actually just turns on an LED for about one second, but it is intended to be adapted to turn on a relay which could be used to switch on another circuit. Please Note: This circuit just turns on an LED for about one second when the correct switches are pressed. It does not actually lock or unlock anything!

Simple Electronic Lock Circuit diagram :

 Simple Electronic Lock Circuit Diagram
Simple Electronic Lock Circuit Diagram

Stripboard Layout :

Stripboard Layout
Parts :
  • resistors: 470, 100k ×2, 1M
  • capacitors: 0.1μF, 1μF 16V radial
  • on/off switch
  • push-switch ×6 (or more)
  • stripboard 12 rows × 25 holes
  • red LED
  • 555 timer IC
  • 8-pin DIL socket for IC
  • battery clip for 9V PP3
  •  
A kit for this project is available from RSH Electronics: www.kpsec.freeuk.com

Copyright :John Hewes 2006,  The Electronics Club

Simple Electronic Quiz Switch

One of the common  rounds in the  quizzes is the buzzer round. We are describing here a simple electronic circuit that can be used in any test or quiz competition. In this circuit, only four persons can participate,  and  every  participant is assigned a certain number. Whenever a switch is pressed, the circuit locks the remaining three entries. At the same time, an alarm sounds and the designated switch number is displayed on the seven segment LED display.When a player presses his switch, the corresponding output of IC1 goes high. Let us suppose, when switch S1 is pressed, D1 input of IC1 goes low and its corresponding output Q1 goes high. As a result, current passes through D5 to piezo buzzer PZ1, which creates a beep. At the same time, current also passes through diodes D6-D7 to show the number on the LED display.

Simple Electronic Quiz Switch Circuit diagram:

Simple Electronic Quiz Switch Circuit Diagram
Simple Electronic Quiz Switch Circuit Diagram

Similarly, when any other switch (S2-S4) is pressed, the corresponding  number  gets  displayed  on  seven segment displaying DIS1 and buzzer sounds. Switch S5 is used to reset the display exclusively. Switch S5 is a push to on switch. The circuit is powered by 9V battery. Assemble the circuit on a general purpose PCB and enclose it in a suitable  case along with seven segment display and piezo buzzer. The assembled circuit can be kept near the host and the switches connected through the external can be assigned to the players. 

Author : Siddeeq Basha  - Copyright : EfyMag

Electronic Extended Play Circuit Diagram

This is a Electronic Extended Play Circuit Diagram. A single op amp-one of four contained in the popular LM324-is operating in a variable pulse width, free-running square wave oscillator circuit, with its timed output driving two transistors that control the on/ off cycle of the tape-drive motor. The Oscillator` s positive feedback path holds the secret to the successful operation of the variable on/ off timing signal. 

 Electronic Extended Play Circuit Diagram

The two diodes and pulse width potentiometer R8 allows the setting of the on and off time, without affecting the oscillator`s operating frequency. One diode allows only the discharge current to flow through it and the section of R8 that it`s connected to. The other diode, and its portion of R8, sets the charge time for the timing capacitor, C3. Since the recorder`s speed is controlled by the precise off/on timing of the oscillator, a simple voltage-regulator circuit (Ql, R3, and D4) is included. 
Connecting the speed control to most cassette recorders is a simple matter of digging into the recorder and disconnecting either of the· motor`s power leads, the ground or common side might be best, and connecting the recorder through a length of small, shielded ci!ble to the control circuit. In some recorders, a remote input jack is furnished to remotely tum on and off the recorder. Before going in and modifying a recorder with a remote jack, try connecting the circuit to the external remote input.

Using Cd4066B Touch Switch Circuit Diagram

Build a Using Cd4066B Touch Switch Circuit Diagram.The CD4066B consists of four bilateral switches, each with independent controls. When touch switch SI is activated, R4 is driven high, and the control voltage goes high, which latches the switch. When S2 is activated, R4 goes low and the control voltage goes low, which deactivates the switch.

Using Cd4066B Touch Switch Circuit Diagram

Using Cd4066B Touch Switch Circuit Diagram

Simple Remote Control Mains Switch

As the only electronics engineer in my  =family and circle of friends, it is some-times not possible to evade an appeal for help. This time the request came from a friendly elderly lady in a retirement home. In her room the light switch by the door  and the pull cord above the bed operate the light fitting on the ceiling in the middle of the room. However, she would prefer that her standing lamp was operated  by these switches instead, since she does not actually have a light fitting mounted  on the ceiling. This standing lamp has an  on/of f switch in the power cord and is  plugged into a power point. However, it  stands rather far from the bed so that she  always has to find her way in the dark. A  wireless operated power point is not really  a consideration, because it is just a matter of time before the remote is lost. Or maybe not? 

Simple Remote Control Mains Switch Circuit Diagram :

Behold a feasible circuit. Buy a wireless power point and an enclosure that is big enough for the remote control and a small piece of prototyping board. On the proto-typing board build the circuit according to the accompanying schematic and (care-fully) open the remote control and solder wires to the push buttons for ‘on’ and ‘off’.  Measure if these are polarised and if that is  the case connect them to the 4N25 opto-couplers as shown in the schematic, where  pin 5 has a higher voltage than pin 4. 

The operation is as follows. The lady operates the pull cord or light switch to turn the light on. This causes the mains voltage to be applied to the transformer. The relay is activated which charges C1. While C1 charges, a small current flows through optocoupler 1. The result is that the ‘on’ button on the remote control is pressed.  The remote control switches the corresponding power point on and to which the  standing lamp is connected. The standing  lamp will therefore now turn on. Capacitor C2 is charged at the same time. If the lady pulls the cord again, or if she operates the  switch near the door, the relay will de-energise and C2 discharges across optocoupler  #2. This operates the ‘off’ contact of the  remote control and the light goes out. 

The remote control continuous to operate from its normal battery and the white enclosure is attached to the ceiling in place of the light fitting. Diode D1 ensures that C1 is discharged when the relay de-energises. D2 ensures that C2 cannot discharge across the relay, but only across optocoupler 2.




Author : Jaap van der Graaff - Copyright :Elektor

Simple Touch Triggered Bistable Circuit Diagram

This is a simple Electronic Touch Triggered Bistable Circuit Diagram. This circuit uses a 555 timer in the bistable mode. Touching T2 causes the output to go high; D2 conducts and D1 extinguishes. Touching T1 causes the output to go low; D1 conducts and D2 is cut off. The output from pin 3 can also be used to operate other circuits ( a triac controlled lamp). In this case, the LEDs are useful for finding the touch terminals in the dark Cl is not absolutely necessary but helps to prevent triggering from spurious pulses.

Electronic Touch Triggered Bistable Circuit Diagram

Electronic Touch Triggered Bistable Circuit Diagram

Simple Automatic Load Sensing Power Switch

This circuit will automatically switch on several mains-powered "slave" loads when a "master" load is turned on. For example, it will switch on the amplifier and CD player in a stereo system when the receiver is turned on. It works by sensing the current draw of the "master" device through a low value high wattage resistor using a comparator. The output of that comparator then switches on the "slave" relay. The circuit can be built into a power bar, extension cord or power center to provide a convenient set of "smart" outlets that switch on when the master appliance is powered (turn on the computer monitor and the computer, printer and other peripherals come on as well).

Simple Automatic Load Sensing Power Switch  Circuit


Parts


Part            


  Total Qty.


Description



C1, C3               2               10uF 35V Electrolytic Capacitor
C2     1               1uF 35V Electrolytic Capacitor
R1     1               0.1 Ohm 10W Resistor
R2     1               27K 1/2W Resistor
R3, R4     1               1K 1/4W Resistor
R5     1               470K 1/4W Resistor
R6     1               4.7K 1/2W Resistor
R7     1               10K 1/4W Resistor
D1, D2, D4     3               1N4004 Rectifier Diode
D3     1               1N4744 15V 1 Watt Zener Diode
U1     1               LM358N Dual Op Amp IC
Q1     1               2N3904 NPN Transistor
K1     1               Relay, 12VDC Coil, 120VAC 10A Contacts
S1     1               SPST Switch 120AVC, 10A
MISC     1               Board, Wire, Socket For U1, Case, Mains Plug, Socket
Notes
  • This circuit is designed for 120V operation. For 240V operation, resistors R2 and R6 will need to be changed.
  • A maximum of 5A can be used as the master unless the wattage of R1 is increased         S1 provides a manual bypass switch.
  • THis circuit is not isolated from the mains supply. Because of this, you must exercise extreme caution when working around the circuit if it is plugged in.

Build A Relay Toggle Switch

Half of RL1 and RL2 manipulate the switching and the other is connected to an application. Relays are 200 ohms above ground and at one point are referenced to positive that turns them off.

Description:

RL1 (which is off) applies plus voltage from its armature and latches RL2 “on”. The application terminals are set to [A]. The condition changes when S1 is activated, voltage is applied to RL2 latching RL1 “on” releasing S1 turns RL2 “off”. RL2’s armature is then directed to R1. Terminals are set to [B].

When S1 is pressed again, the relays negative side are referenced to positive, RL1 turns “off” (there’s no current flow). RL2 turns “on” when S1 is released, terminals are set to [A]. There is slight lag between relays depending on how long S1 is held.

Relay Toggle Switch Circuit Diagram

Note: 

If different relays are used, adjustment of R1’s value may be required. For example, OEG relays (12vdc, 270 ohm coil) need R1 at 60 - 70 ohms. The prime motivation for this design was to avoid using toggle switches for my audio control panel. Another plus, it can be controlled from a remote transmitted pulse.Link

Simple Energy-Saving Switch Schematic Diagram

Lights do not always need to be on at full power. Often it would be useful to be able to turn off the more powerful lights to achieve softer illumination, but this requires an installation with two separately-switch-able circuits, which is not always available.
 Energy-Saving Switch Circuit Image
Switch-Circuit-Image
If the effort of chasing out channels and replastering for a complete new circuit is too much, then this circuit might help. Normal operation of the light switch gives gentle illumination (LA1). For more light, simply turn the switch off and then immediately (within 1 s) on again. The circuit returns to the gentle light set-ting when switched off for more than 3 s. There is no need to replace the light switch with a dual version: simply insert this circuit between switch and lamp.

Energy-Saving Switch Circuit Diagram
Energy-saving Switch-Circuit-Diagram
Parts List:
Resistors:
R1 = 100Ω
R2 = 680Ω
Capacitor:
C1 = 4700µF 25 V
Semiconductors:
D1,D2 = 1N4001
Miscellaneous:
K1,K2,K3 = 2-way PCB terminal
block, lead pitch 7.5 mm
F1 = fuse, 4AT (time lag) with PCB
mount holder
TR1 = mains transformer, 12V @ 1.5
VA, short-circuit proof, PCB mount
B1 = B80C1400, round case (80V
piv, 1.4A)
RE1 = power relay, 12V, 2 x c/o,
PCB mount
RE2 = miniature relay, 12V, 2 x c/o,
PCB moun

How does it work?
Almost immediately after switch-on, fast-acting miniature relay RE2 pulls in, since it is connected directly after the bridge rectifier. Its nor-mallyclosed contact then isolates RE1 from the supply, and thus current flows to LA1 via RE1’s normally-closed con-tact. RE1 does not have time to pull in as it is a power relay and thus relatively slow. Its response is also slowed down by the time constant of R1 and C1. If the current through the light switch is briefly interrupted, RE2 drops out immediately. There is enough energy stored in C1 to activate RE1, which then holds itself pulled in via a second, normally-open, contact. If current starts to flow again through the light switch within 1s, LA2 will light. To switch LA1 back on it is necessary to turn the light switch off for more than 3 s, so that C1 can discharge via R2 and RE1. The printed circuit board can be built into a well insulating plastic enclosure or be incorporated into a light fitting if there is sufficient space.
PCB-Layout
Circuit-Diagram
Caution:
the printed circuit board is connected directly to the mains-powered lighting circuit. Every precaution must be taken to prevent touching any component or tracks, which carry dangerous voltages. The circuit must be built into a well insulated ABS plastic enclosure.Link
Older Post ►
eXTReMe Tracker
 

Copyright 2011 Diagram Digital Schematic is proudly powered by blogger.com